Logo
English

CONTENTS

Engineering and Educational Technologies. Kremenchuk : KrNU, 2019. Vol. 7. No. 4. 115 p.
Journal homepage:
http://eetecs.kdu.edu.ua

Download issue

IMPLEMENTATION OF NEW FORMS AND METHODS OF EDUCATIONAL PROCESS ORGANIZATION AT HIGHER EDUCATION INSTITUTION: HISTORY AND MODERN

Distance learning in higher education: current trends
Yaroshenko T.  (download)
[in Ukrainian]

Abstract. The article is dedicated to the current issues of using distance-learning technologies in higher education in Ukraine and the world. The major stages and reasons for the rapid growth in the world of universities providing distance learning under the influence of rapid development of information and communication technologies and the promotion of educational innovations, including MOOC (Massive Open Online Courses) and other, are discussed in detail such as electronic learning process management systems. The author examines and analyzes the main four steps that preceded and facilitated the emergence of distance learning, namely: communication through postal communications, communication via radio and television, communication via computer and media, communication through mass-based online courses. The article also looks at the current state and prospects of further development of distance education in Ukraine. The author points out, among other things, the basic normative provisions that determine the basic principles of creation, organization, and implementation of modern distance learning in Ukraine. In an article the basic principles of distance learning are formulated, the organizational and methodological conditions and the principles of its introduction into the educational process are substantiated; its main advantages and disadvantages are highlighted. This article specifically describes the importance of distance education for the implementation and implementation of the concept of Lifelong Learning. An important project of introducing distance (blended) learning at the National University of Kyiv-Mohyla Academy, in particular, the DistEdu platform. The article discusses the ways of engaging lecturers and students to work with this educational online platform. The article identifies directions for further development of distance education in Ukraine and outlines the potential of DistEdu-like projects in promoting distance education in the Ukrainian educational environment and the educational community.

Key words: distance learning, distance education, blended learning, educational process, massive online open courses, higher education.

References

  1. Antonov, V. M. (2011). Dystantsiine navchannia: lohika, tekhnolohii, perspektyvy : [kiberakmeolohichnyi pidkhid]. Kyiv; Kherson: Shtrykh [in Ukrainian].
  2. Bloshchynskyi, I. H. (2015). Sutnist ta zmist poniattia “dystantsiine navchannia” v zarubizhnii ta vitchyznianii naukovii literaturi. Visnyk Natsionalnoi akademii Derzhavnoi prykordonnoi sluzhby Ukrainy, 3. Retrieved from http://nbuv.gov.ua/UJRN/Vnadps_2015_3_4 [in Ukrainian].
  3. 3. Boublik, V. (2018). On road to distance education and e-learning. NaUKMA Research Papers. Computer Science, 1, 4–9. https://doi.org/10.18523/2617-3808.2018.4-9 [in Ukrainian].
  4. Haletskyi S., Haletska T. (2018). Dystantsiine navchannia yak element informatsiino-komunikatsiinykh tekhnolohii v osviti. Zbirnyk naukovykh prats Umanskoho derzhavnoho pedahohichnoho universytetu imeni Pavla Tychyny, 1, 54–62. Retrieved from http://nbuv.gov.ua/UJRN/znpudpu_2018_1_8 [in Ukrainian].
  5. Gromova, T. (2014). Mitio Kaku: Ucheba uzhe ne budet bazirovat'sya na zapominanii. Retrieved from http://www.dsnews.ua/society/mitio-kaku-ucheba-uzhe-ne-budet-bazirovatsya-na-zapominanii-28082014231600 [in Russian].
  6. Zhuravska, N. S. (2016). Dystantsiine navchannia v krainakh Yevropeiskoho Soiuzu ta Ukraini: realii ta perspektyvy [E-learning in the European Union and Ukraine: Realities and prospects]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia: Pedahohika, psykholohiia, filosofiia, 233, 101–106. Retrieved from http://nbuv.gov.ua/UJRN/nvnau_ped_2016_233_17 [in Ukrainian].
  7. Zabolotskyi, A. Yu., Kocheva, N. S. (2016). Dystantsiine navchannia u vyshchii shkoli dlia liudei z osoblyvymy potrebamy. Molodyi vchenyi, 12, 429–432. Retrieved from http://nbuv.gov.ua/UJRN/molv_2016_12_106 [in Ukrainian].
  8. Kademiia, M. Yu., Umanets, V. O. (2016). Dystantsiine navchannia u virtualnomu universyteti yak sposib dostupu do yakisnoi osvity. Vidkryte osvitnie e-seredovyshche suchasnoho universytetu, 2, 175–184. Retrieved from http://nbuv.gov.ua/UJRN/oeeemu_2016_2_15 [in Ukrainian].
  9. Kliuchko, S. S., Yevtushenko, V. M., Syrtsov, V. K. (2017). Suchasnyi osvitnii protses: kurs na dystantsiine navchannia. Morphologia, 11(2), 58–60. Retrieved from http://nbuv.gov.ua/UJRN/Morphology_2017_11_2_12 [in Ukrainian].

10.  Kozubovska, I. V., Saharda, V. V., Pichkar, O. P. (2002). Dystantsiine navchannia v systemi osvity. Uzhhorod [in Ukrainian].

11.  Kontseptsiia rozvytku dystantsiinoi osvity v Ukraini (2000). Retrieved from http://www.osvita.org.ua/distance/pravo/00.html [in Ukrainian].

12.  Kukharenko, V. M., Rybalko, O. V., Syrotenko, N. H. (2002). Dystantsiine navchannia: umovy zastosuvannia : dystantsiinyi kurs. Kharkiv: Torsinh [in Ukrainian].

13.  Liakhotska, L. (2014). Dystantsiine navchannia yak pedahohichna tekhnolohiia neperervnoi osvity [Distance learning as pedagogical technology of continuing education]. Pedahohichni nauky, 61–62, 33–39. Retrieved from http://dspace.pnpu.edu.ua/bitstream/123456789/3504/1/Liakhotska.pdf [in Ukrainian].

14.  Murashchenko, T. V. (2017). Zmishane ta dystantsiine navchannia yak sposib dostupu do yakisnoi osvity [Blended and distance learning as a way of access to quality education]. Vidkryte osvitnie e-seredovyshche suchasnoho universytetu, 3. Retrieved from http://nbuv.gov.ua/UJRN/oeeemu_2017_3_45 [in Ukrainian].

15.  Ovsannikova, V. V. (2016). Dystantsiine navchannia v osvitnomu protsesi vyshchoho navchalnoho zakladu [Distance learning at the educational process of higher educational institution]. Visnyk Zaporizkoho natsionalnoho universytetu. Pedahohichni nauky, 2, 56–60. Retrieved from http://nbuv.gov.ua/UJRN/Vznu_ped_2016_2_10 [in Ukrainian].

16.  Opanasiuk, Yu. (2016). Dystantsiine navchannia yak naslidok evoliutsii tradytsiinoi systemy osvity. Vyshcha osvita Ukrainy, 1, 49–53 [in Ukrainian].

17.  Vyshnivskyi, V. V., Hnidenko, M. P., Haidur, H. I., Ilin, O. O. (2014). Orhanizatsiia dystantsiinoho navchannia. Stvorennia elektronnykh navchalnykh kursiv ta elektronnykh testiv. Kyiv: DUT [in Ukrainian].

18.  Polovaya, N. O. (2017). Dystantsiine navchannia yak innovatsiina forma osvity [Distance learning as an innovative form of education]. Grani, 20 (1), 27–31. Retrieved from http://nbuv.gov.ua/UJRN/Grani_2017_20_1_6. doi: 10.15421/17174 [in Ukrainian].

19.  Pro zatverdzhennia Polozhennia pro dystantsiine navchannia : nakaz Ministerstva osvity i nauky Ukrainy (2013). Retrieved from https://zakon.rada.gov.ua/laws/show/z0703-13 [in Ukrainian].

20.  Pro zatverdzhennia Prohramy rozvytku systemy dystantsiinoho navchannia na 2004–2006 roky : Postanova Kabinetu Ministriv Ukrainy № 1494 (2003). Retrieved from https://zakon.rada.gov.ua/laws/show/1494-2003-%D0%BF [in Ukrainian].

21.  Pro Natsionalnu prohramu informatyzatsii : Zakon Ukrainy (2002). Retrieved from https://zakon.rada.gov.ua/laws/show/74/98-%D0%B2%D1%80 [in Ukrainian].

22.  Pro stan i perspektyvy rozvytku dystantsiinoho navchannia v Ukraini : Rishennia Kolehii MON Ukrainy, Protokol № 6/2–4 (2005). Retrieved from http://www.osvita.org.ua/distance/pravo/04.html [in Ukrainian].

23.  Serhiienko, I. V., Hlybovets, M. M. Horokhovskyi, S. S., Hlybovets, A. M. (2012). Prohramni zasoby stvorennia i suprovodu rozpodilenoho navchalnoho seredovyshcha [The software for creation and maintenance of the distributed learning environment]. Kyiv: [The National University of Kyiv-Mohyla Academy] [in Ukrainian].

24.  Stavytska, I. (2015). Modeli dystantsiinoho navchannia [Models of distance learning]. Novitni osvitni tekhnolohii. Retrieved from http://confesp.fl.kpi.ua/ru/node/1151 [in Ukrainian].

25.  Altunoglu, A. (2017). Initial perceptions of open higher education students with learner management systems. Turkish Online Journal of Distance Education (TOJDE), 18 (3), 96–104. doi: https://doi.org/10.17718/tojde.328939

26.  Barak, M. (2017). Science teacher education in the twenty-first century: A pedagogical framework for technology-integrated social constructivism. Research in Science Education, 47 (2), 283–303. doi:10.1007/s11165-015-9501-y

27.  Brecko, B. N., Kampylis, Р., Punie, Y. (2014). Mainstreaming ICT-enabled Innovation in Education and Training in Europe: Policy actions for sustainability, scalability and impact at system level. Joint Research Centre. Luxembourg: EUR-OP. 1 online resource (56 p.). (EUR, 26601). (JRC scientific and policy reports). Retrieved from http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=6361. doi:10.2788/52088

28.  Knyazeva, S. (Ed.). (2016). Futures for Higher Education and ICT: Changes Due to the Use of Open Content. Moscow: UNESCO Institute for Information Technologies in Education. Retrieved from https://iite.unesco.org/pics/publications/en/files/3214745.pdf.

29.  LMS Market by Component (Solution and Services), Delivery Mode (Distance Learning, Instructor-Led Training and Blended Learning), Deployment Type, User Type (Academic and Corporate), and Region – Global Forecast to 2023. (2019). Markets and markets. January 19. Retrieved from https://www.marketsandmarkets.com/Market-Reports/learning-management-systems-market-1266.html.

30.  Miller, G. (2014). History of Distance Learning. Worldwidelearn. Retrieved from https://www.worldwidelearn.com/education-articles/history-of-distance-learning.html.

31.  Picciano A. G. [2017]. Online education policy and practice: the past, present, and future of the digital university. New York: Routledge.

32.  Picciano, A. G. (2019). Online education: foundations, planning, and pedagogy. New York: Routledge.

33.  Rouse, M. (2013). Massive open online course (MOOC). Whatis.techtarget. Retrieved from https://whatis.techtarget.com/definition/massively-open-online-course-MOOC.

34.  Shah, D. (2018). 190 universities just launched 600 free online courses. Here’s the full list. Quartz. October 25. Retrieved from https://qz.com/1437623/600-free-online-courses-you-can-take-from-universities-worldwide/.

35. Ubachs, G., Konings, L., Nijsten, B. (Eds.). (2019). The 2019 OpenupEd trend report on MOOCs. Maastricht: European Association of Distance Teaching Universities. Retrieved from https://openuped.eu/images/Publications/The_2019_OpenupEd_Trend_Report_on_MOOCs.pdf

Choice of mathematics research papers themes by senior high school students-members of MAS in application aspect  
Skotnikova L.  (download)
[in Ukrainian]

Abstract. The purpose of the paper is to study problems of the mathematics research projects theme choice and discourse by senior high school students-members of Ukraine Minor Academy of Sciences (MAS). It is shown that the mathematical theory allows a new scientific level to explore and solve complex technical, physico-chemical, engineering, biotechnology and other problems of our time. The advantages of the project themes choice of in the application aspect are investigated. The method of research works themes definition and choice by MAS students-members with involvement of education stakeholders in joint activity with a mathematics teacher is resulted. The scheme of MAS students-members’ mathematical and research abilities development with active involvement of stakeholders model is presented. The science novelty is that the effectiveness of an extracurricular research work in mathematics organization to improve the choice of work themes in application aspect investigated and analyzed. The article analyzes works content of the Department of mathematics presented at the competitions of MAS during 2017–2019. It is revealed that content of MAS students-members is aimed only at in-depth study of individual sections of mathematics school course, and fixing the skills of solving problems of increased complexity, but there are not enough works of an applied nature that demonstrate some practical applications of mathematical methods. It is concluded what themes and why should be in demand by MAS students-members in the next competitions of research projects.

Key words: research project, research paper theme, Minor Academy of Sciences, education stakeholder.

References

  1. Grytsiuk, O. S. (2017). Suchasnyy stan i perspektyvy vprovadzhennya STEM-osvity v Ukrayini, Engineering and Educational Technologies, 3(19), 163–168. URL: http://eetecs.kdu.edu.ua/2017_03/EETECS2017_0324.pdf. (accessed: 27.08.2019). [in Ukrainian]
  2. Khivrich, I. V. (2019). Rolʹ matematyky v ekolohichnomu vykhovanni lyudyny, Neperervna osvita dlya staloho rozvytku: filosofsʹko-teoretychni konteksty ta pedahohichna praktyka: materialy Vseukrayinsʹkoyi nauk.-prakt. konf. (Dnipro, 06 hrud. 2018 r.), part II, SPD «Okhotnik», Dnipro, Ukraine, 85–87. [in Ukrainian]
  3. Shydakova-Kamenyuka, O. H., Samokhvalova, O. V., Oliynyk, S. H., & Kravchenko, O. I. (2016). Metodolohiya ta orhanizatsiya naukovykh doslidzhenʹ, KHDUKHT, Kharkiv, Ukraine, 187 p. [in Ukrainian]
  4. Balakyreva, O. N., Levyn, R. Ya. (2017). Steykkholdery obrazovanyya – sub’ekty y roly, Vzaymodeystvye obrazovatelʹnykh uchrezhdenyy  so  steykkholderamy:  velenye  vremeny:  materialy  XV  Mizhnar.  nauk.-prakt.  konf.  (Kharkiv,  16  lyutoho 2017 roku), Narodna ukrayinsʹka akademiya, Kharkiv, Ukraine, 21–27. URL: http://www.nua.kharkov.ua/images/stories/Nauka/Konferenciya/fevral%202017.pdf. (accessed: 02.09.2019). [in Russian]
  5. Stohlmann,  M. (2019). Three modes of STEM integration for middle school mathematics teachers, School Science and Mathematics, 119(5), 287–296. DOI: https://doi.org/10.1111/ssm.12339
  6. Mohd Rustam, R., Azlina, K. (2016). Challenges in mathematics learning: a study from school students’ perspective. URL: https://www.researchgate.net/publication/321873178_Challenges_in_Mathematics_Learning_A_Study_from_School_Student’s_Perspective. (accessed: 05.09.2019).
  7. Jensen, F., Sjaastad, J. (2013). A Norwegian Out-of-School Mathematics Project’s Influence on Secondary Students’ STEM Motivation, International Journal of Science and Mathematics Education, 11(6), 1437–1461. DOI: https://doi.org/10.1007/s10763-013-9401-4
  8. Leung, A. (2019). Exploring STEM Pedagogy in the Mathematics Classroom: a Tool-Based Experiment Lesson on Estimation, International Journal of Science and Mathematics Education, 17(7), 1339–1358. DOI: https://doi.org/10.1007/s10763-018-9924-9
  9. Weinberg, A., McMeeking, L. (2017). Toward Meaningful Interdisciplinary Education: High School Teachers’ Views of Mathematics and Science Integration, School Science and Mathematics, 117(5), 204–213. DOI: https://doi.org/10.1111/ssm.12224

10.  Yu, K.-Ch., Wu, P.-H., & Fan, S.-Ch. (2019). Structural Relationships among High School Students’ Scientific Knowledge, Critical Thinking, Engineering Design Process, and Design Product, International Journal of Science and Mathematics Education, 1–22. DOI:  https://doi.org/10.1007/s10763-019-10007-2

11.  Bicer, A., Capraro, R. (2019). Mathematics achievement in the secondary high school context of STEM and non-STEM schools, School Science and Mathematics, 119(2), 61–71. DOI: https://doi.org/10.1111/ssm.12321

12.  Ling Koh, J. H. (2019). Articulating Teachers’ Creation of Technological Pedagogical Mathematical Knowledge (TPMK) for Supporting Mathematical Inquiry with Authentic Problems, International Journal of Science and Mathematics Education, 17(6), 1195–1212. DOI: https://doi.org/10.1007/s10763-018-9914-y

13.  Tas, Y., Aksoy, G., Cengiz, E. (2019). Effectiveness of Design-Based Science on Students’ Learning in Electrical Energy and Metacognitive  Self-Regulation, International  Journal  of  Science  and  Mathematics  Education,  17(6), 1109–1128. DOI: https://doi.org/10.1007/s10763-018-9923-x

14.  Sinicrope, R., Eppler, M., Preston, R., & Ironsmith, M. (2015). Preservice Teachers of High School Mathematics: Success, Failure, and Persistence in the Face of Mathematical Challenges, School Science and Mathematics, 115(2), 56–65. DOI: https://doi.org/10.1111/ssm.12104

15.  Polly, D., Mraz, M., Algozzine, R. (2013). Implications for Developing and Researching Elementary School Mathematics Coaches, School Science and Mathematics, 113(6), 297–307. DOI: https://doi.org/10.1111/ssm.12029

16.  Vasylʹyeva, D. V. (2016). Naukovo-doslidnytsʹka diyalʹnistʹ uchniv v umovakh realizatsiyi kompetentnisnoho pidkhodu do navchannya matematyky, Pedahohichni nauky: teoriya, istoriya, innovatsiyni tekhnolohiyi, 2(56), 196–202. URL: http://library.sspu.sumy.ua/wp-content/uploads/2018/04/2_16.pdf. (accessed: 02.09.2019). [in Ukrainian]

17.  Dobrovolʹska, I. (2009). Z dosvidu roboty u Maliy akademiyi nauk, Shkola Yunoho Vchenoho: naukovo-populyarnyy zhurnal MAN, 1–2. URL: http://scientistschool.org.ua/?p=52. (accessed: 03.09.2019). [in Ukrainian]

18.  Pykhtar, M. P. (2013). Modelʹ systemy rozvytku matematychnykh zdibnostey shkolyariv u diyalʹnosti Maloyi akademiyi nauk, Naukovyy chasopys Natsionalʹnoho pedahohichnoho universytetu imeni M. P. Drahomanova. Seriya 3 : Fizyka i matematyka u vyshchiy i seredniy shkoli, 11, 71–80. URL: http://enpuir.npu.edu.ua/bitstream/123456789/15490/1/Pikhtar.pdf. (accessed: 27.08.2019). [in Ukrainian]

19.  Protokol zakhystu naukovo-doslidnytsʹkykh robit uchniv-chleniv MAN Ukrayiny u 2017 rotsi. Sektsiya: matematyky. (2017). URL: http://man.gov.ua/upload/konkurs-zahyst/2017/Results/mathematics/Zah/Matemat_zah.pdf. (accessed: 23.08.2019). [in Ukrainian]

20.  Protokol zakhystu naukovo-doslidnytsʹkykh robit uchniv-chleniv MAN Ukrayiny u 2018 rotsi. Sektsiya: matematyky. (2018). URL: http://man.gov.ua/upload/konkurs-zahyst/2018/Results/mathematics/Zah/Matemat_zah.pdf. (accessed: 23.08.2019). [in Ukrainian]

21.  Zbirka materialiv III etapu Vseukrayinsʹkoho konkursu-zakhystu naukovo-doslidnytsʹkykh robit uchniv-chleniv Maloyi akademiyi nauk Ukrayiny u 2019 rotsi. (2019). Natsionalʹnyy tsentr «Mala akademiya nauk Ukrayiny», Kyiv, Ukraine, 146 p. URL: https://mon.gov.ua/storage/app/media/news/Новини/2019/05/06/-06-05-19.pdf. (accessed: 23.08.2019). [in Ukrainian]

The use of personally-oriented educational technologies in the formation of mathematical competences  
Tumanova N.  (download)
[in Ukrainian]

Abstract. The training of graduates of a higher educational institution of the second level must comply with the established requirements of the educational and professional degree of a junior bachelor. They must possess the indicated qualities, which is the rationale for the development and application of new educational technologies in the educational process. The essence of the formation of mathematical competencies is highlighted. The main tasks and directions of their implementation in the study of mathematics in higher education institutions of the second level of accreditation are established. Mathematical competencies were selected, which should be provided with modern pedagogical technologies in accordance with the Concept of the new Ukrainian school. The types of pedagogical teaching technologies that can be used to form the basic mathematical competencies are considered. The indicated advantages and disadvantages that arise as a result of their application. Methods are formed to develop the mental abilities of students. Based on the results of the analysis of research by leading experts in the field of pedagogy, the criteria for the acquisition of mathematical competence for students of the second level higher education institution are determined. To obtain certain competencies, pedagogical technology is applied that is focused more on the student, and not on the subject of study, on the verification of the practice (teaching methods and techniques) in the course of empirical analysis and the widespread use of audiovisual means in teaching, defines the practice in close connection with the theory of instruction. A personality-oriented approach combines upbringing and education in a single process of assistance, support, development of a student, preparing him for life creativity and the like.

Key words: mathematical competencies, teaching technologies, educational technologies, problem-based learning.

References

  1. Safonova, I. Ya. (2015). Development of mathematical competence in high school students as a way to form a comprehensively developed personality. Scientific Bulletin of VO Sukhomlinsky, 1 (114), 237-240.
  2. Globin, O. I. (2015). Criteria and performance indicators of competently oriented mathematics teaching at school. «ITM plus -2015», 2, 36-40.
  3. Globin, O. I., Burda, M. I., Vasilyeva, D. V., Voloshena, V. V., Vashulenko, O. P., Matsko, N. D., Khmara, T. M. (2015). Competently oriented methodology of teaching mathematics in the basic school: method. manual. Pedagogical Thought, Kyiv, 245 p.
  4. Koshechko, N. (2015). Technologies of teaching and learning in higher education. Pedagogy, 1, 35.
  5. Barabola, M. M., Matyash. O. I. (2010). Teacher's guide of mathematics teacher. A guide for the self-education of mathematics teachers. Vinnytsia, 128 p.
  6. Waldorf Pedagogy. URL: http://zakinppo.org.ua/onlajndovidnik-klasnogo-kerivnika/vihovni-tehnologii-ta-formi-roboti/1254-valdorfska-pedagogika (accessed 25.08.2019)
  7. Pavlenko, V. V. (2012). Methods of education of Maria Montessori. Methodical principles of realization of personally oriented educational process in modern educational principles. Zhytomyr,  218–221.
  8. Avramenko, O. V., Lutchenko, L. I., Retunska, V. V., Rizhnyak, R. Ya., Shlyanchak, S. O. (2009). Innovative and modern pedagogical technologies of teaching mathematics. Kirovograd, 200 p.
  9. Anishchenko, O. V., Yakovets, N. I. (2007). Modern pedagogical technologies: a lecture course. teach. manual. For the title. ed. NO. Jacob. Publishing house of NDU them, Nizhyn, 199 p.
  10. Belkin, A. S. (1991). The situation of success. How to create it? "Enlightenment", Moscow, 169 p.
  11. Pometun, O. I., Pyrozhenko, L. V. (Ed.), Pometun, O. I. (2004). Modern lesson. Interactive learning technologies. scientific and methodological manual. AS Publishing House, Kiev, 192 р.
  12. Goncharenko, S. (1997). Ukrainian Pedagogical Dictionary. Libid, Kiev, 376 p.
  13. Andreeva, V. M., Grigorash, V. V. (2006). Pedagogical book of the teacher. The Basis, Kharkiv, 352 p.
  14. State standard of basic and complete secondary education.
  15. Yurkovich, V. G. (2016). Scientific publications. Pedagogical search, 3 (91).
  16. Arestenko, V. (2017). The role of game technologies in the preparation of future teachers of natural sciences for professional activity. Collection of scientific works, 3 (10).
  17. Kozira, V. M. (2017). Technology of the development of critical thinking in the educational process: a teaching manual for teachers. TOKIPPO, Ternopil, 60 p.
  18. Pometun, O. I., Pobirchenko, N. S., Kobernik, G. I., Komar, O. A., Torchinska, T. A. (2008). Interactive technologies: theory and methodology. A guide for VET teachers, colleges, and anyone interested in using interactive technology in the learning process to improve it. Uman-Kyiv, 94 p.

MODERN TRENDS OF PROFESSIONAL EDUCATION DEVELOPMENT

Theoretical and methodological aspects of the organization of supervision for the formation of professional identity of future specialists in physical therapy, ergotherapy  
Dmitriieva N.  (download)
[in Ukrainian]

Abstract. The purpose of the article is to determine the theoretical and methodological aspects of the organization of supervision for the formation of professional identity of future specialists in physical therapy and ergotherapy. The methodological basis for conducting this study was laid by such approaches as theoretical analysis of scientific and methodological literature, synthesis, generalization, comparative analysis. The theoretical analysis of pedagogical, medical, philosophical, psychological and multidisciplinary literature was carried out to solve the purpose of the study. Supervision in research is seen as a formal process of professional support and training that enables practitioners to develop knowledge and competence, to realize responsibility for their own practice. The study found that professional identity in its concept is closely interrelated with such concepts as professional development, professionalism, professional self-esteem, professional self-determination, and is one of the main criteria for becoming a professional in a competitive environment. It is established that the formation of professional identity is the most important task that a professional faces in the period of his professional formation. The technological ways of supporting the supervisor of the effective position of the future specialist in physical therapy and ergotherapy under supervision are highlighted. It is theoretically substantiated that in order to achieve effective supervision for forming the professional identity of future specialists in physical therapy and ergotherapy, a useful role-playing matrix is ​​a useful technology, which allows to analyze in detail the complex cases in the professional activity of physical therapists and ergotherapists. The principle of gradualism is important for the organization of supervision. The article identifies four levels of supervision that are designed for the safe educational practice of specialists in physical therapy and ergotherapy. According to the results of the study, the responsibilities of the supervisor and the future specialist in physical therapy, ergotherapy under supervision, the fulfillment of which is necessary to achieve positive results of supervision, are allocated. Having analyzed the results of the research of the scientific and methodological literature, it is determined that the fulfillment of the allocated responsibilities by the subjects of educational practice will allow the future specialist in physical therapy, ergotherapy to form three main components of professional identity: cognitive, emotional-evaluative, as well as behavioral.

Key words: supervision, professional identity, physical therapy, ergotherapy, formation of professional identity, organization of supervision.

References

  1. Dmitriieva N. S., Kopochynska Yu. V. (2018). Naukove obhruntuvannia zastosuvannia intehratyvnoho pidkhodu u pidhotovtsi fakhivtsiv z fizychnoi terapii [Scientific substantiation of application of integrative approach in training of specialists in physical therapy]. Molodyi vchenyi [Young scientist], 12, 420-424. doi: https://doi.org/10.32839/2304-5809/2018-12-64-96.
  2. Dmitriieva N. S., Kopochynska Yu. V. (2019). Formuvannia profesiinoi identychnosti maibutnikh fakhivtsiv z fizychnoi terapii yak faktor pidvyshchennia yikh konkurentospromozhnosti [Formation of the Professional Identity of Future Physical Therapy Specialists as a Factor for Increasing their Competitiveness]. Zbirnyk naukovykh prats [Khersonskoho derzhavnoho universytetu]. Pedahohichni nauky [Collection of Scientific Papers [Kherson State University]. Pedagogical Sciences], 79(3), 105-110. doi: 10.32999/ksu2413-1865/2019-87-19
  3. Dovidnyk kvalifikatsiinykh kharakterystyk profesii pratsivnykiv. Vypusk 78 «Okhorona zdorov’ia», zatverdzhenyi nakazom Ministerstva okhorony zdorov’ia Ukrainy 29.03.2002 r. № 117 (zi zminamy) [Handbook of qualification characteristics of professions of workers. Issue 78 "Health" approved by the order of the Ministry of Health of Ukraine on March 29, 2002 No. 117 (as amended)] Retrieved from http://zakon.rada.gov.ua/rada/show/va117282-02 (accessed 09.10.2019).
  4. Kopochynska Yu. V. (2017). Deiaki zahalnonaukovi pidkhody do formuvannia profesiinoi identychnosti maibutnikh fakhivtsiv iz fizychnoi reabilitatsii [Some general scientific approaches to the formation of professional identity of future specialists in physical rehabilitation]. Zbirnyk naukovykh prats [Khersonskoho derzhavnoho universytetu]. Pedahohichni nauky [Collection of Scientific Papers [Kherson State University]. Pedagogical Sciences], 79(3), 153-159. Retrieved from http://nbuv.gov.ua/UJRN/znppn_2017_79(3)__31.
  5. Kopochynska Yu. V., Dmitriieva N. S. (2019). Bazovi kompetentsii maibutnikh fakhivtsiv z fizychnoi terapii ta erhoterapii u stanovlenni profesiinoi maisternosti [Basic competences of future specialists in physical therapy and ergotherapy in the development of professional skill]. Naukovyi chasopys Natsionalnoho pedahohichnoho universytetu imeni M.P. Drahomanova. Seriia № 15. Naukovo-pedahohichni problemy fizychnoi kultury (fizychna kultura i sport): zbirnyk naukovykh prats [Scientific journal of the National Pedagogical University named after M.P. Drahomanov. Series № 15. Scientific and pedagogical problems of physical culture (physical culture and sports): Collection. scientific works], 4 (112), 51 - 57.
  6. Standart vyshchoi osvity za spetsialnistiu 227 «Fizychna terapiia, erhoterapiia» dlia pershoho (bakalavrskoho) rivnia osvity, zatverdzhenyi nakazom Ministerstva osvity i nauky Ukrainy vid 19.12.2018 r. [Higher education standard in the specialty 227 "Physical therapy, ergotherapy" for the first (bachelor) level of education, approved by the order of the Ministry of Education and Science of Ukraine from 19.12.2018] Retrieved from https://osvita.ua/doc/files/news/630/63031/227-fizichna-terapiya-ergoterapiya-bakal.pdf (accessed 09.10.2019).
  7. Aguilar-Rodríguez M., Marques-Sule E., Serra-Añó P., Dueñas L., Sempere-rubio N. (2017). Elaboración y validación del «Cuestionario de actitudes hacia la ética profesional en Fisioterapia». Fisioterapia, 39, doi: 10.1016/j.ft.2016.12.001.
  8. Aguilar-Rodríguez M., Marques-Sule E., Serra-Añó P., Espí-López G. V., Dueñas-Moscardó L., Pérez-Alenda S. (2019). A blended-learning programme regarding professional ethics in physiotherapy students. Nursing Ethics, 26(5), 1410–1423. https://doi.org/10.1177/0969733017748479
  9. Atkinson R., McElroy T. (2016). Preparedness for physiotherapy in private practice: Novices identify key factors in an interpretive description study. Manual Therapy, 22, 116–121, doi:10.1016/j.math.2015.10.016
  10. Becker M., Dudley-Javoroski S. Shields, Richard K. (2017). Professionalism Values in Health Science Education: Self- and Peer-Assessment of Faculty, Staff, and Students. Journal of Allied Health, 46, 3,178-184.
  11. Black L. L., Jensen G. M., Mostrom E., Perkins J., Ritzline P. D., Hayward L., Blackmer B. (2010). The First Year of Practice: An Investigation of the Professional Learning and Development of Promising Novice Physical Therapists. Physical Therapy, 90, 1758–1773, https://doi.org/10.2522/ptj.20100078
  12. Clarkson H. J., Thomson O. P. (2017). ‘Sometimes I don't feel like an osteopath at all’- a qualitative study of final year osteopathy students' professional identities. International Journal of Osteopathic Medicine, 26, 18-27, https://doi.org/10.1016/j.ijosm.2017.09.001. (http://www.sciencedirect.com/science/article/pii/S1746068917300986)
  13. Guidelines for Supervision, Roles, and Responsibilities During the Delivery of Occupational Therapy Services. American Journal of Occupational Therapy, November/December 2009, 63, 797-803. doi: 10.5014/ajot.63.6.797
  14. Hall T., Cox D. (2009). Clinical supervision: an appropriate term for physiotherapists?. Learning in Health and Social Care, 8, 282 - 291. doi: 10.1111/j.1473-6861.2009.00226.x.
  15. Hammond R., Cross V., Moore A. (2016). The construction of professional identity by physiotherapists: A qualitative study. Physiotherapy, 102, 71–77, doi:10.1016/j.physio.2015.04.002
  16. Harman K., Sim M., LeBrun J., Almost J., Andrews C., Davies H., Khalili H., Sutton E., Price S. (2019). Physiotherapy: an active, transformational, and authentic career choice. Physiotherapy Theory and Practice, 1-14. doi: 10.1080/09593985.2019.1639230.
  17. Inman J., Thomson O. P. (2019). 'Complementing or conflicting? A qualitative study of osteopaths' perceptions of NICE low back pain and sciatica guidelines in the UK. International Journal of Osteopathic Medicine, 31, 7–14.
  18. Khalili H., Hall J., Deluca S. (2014). Historical analysis of professionalism in western societies: Implications for interprofessional education and collaborative practice. Journal of interprofessional care, 28, doi: 10.3109/13561820.2013.869197.
  19. Khalili H., Orchard C., Laschinger H., Randa F. (2013). An interprofessional socialization framework for developing an interprofessional identity among health professions students. Journal of interprofessional care, 27, doi: 10.3109/13561820.2013.804042.
  20. Korpi H., Piirainen A., Peltokallio L., (2017). Practical work in physiotherapy students’ professional development. Reflective Practice,  821 - 836, doi: 10.1080/14623943.2017.1361920
  21. Lee S.,  Denniston C., Edouard V., Palermo C., Pope K., Sutton K., Waller S.,Ward B., Rees C. (2019). Supervision training interventions in the health and human services: realist synthesis protocol. British Medical Journal, Open. 9. e025777. doi: 10.1136/bmjopen-2018-025777.
  22. Paskaleva R. (2016). Effect of innovations in kinesitherapy and ergotherapy training on the students’ motivation for practical work. British Medical Bulletin, 321-333.
  23. Supervision guidelines for physiotherapy. Retrieved from https://www.physiotherapyboard.gov.au/Codes-Guidelines/Supervision-guidelines.aspx (accessed 02.10.2019).
  24. Tynjälä P., Häkkinen P., Hämäläinen R. (2014). TEL@work: Toward integration of theory and practice. British Journal of Educational Technology, 45, 990–1000. doi:10.1111/bjet.12164
  25. Tynjälä P., Virtanen A., Klemola U., Kostiainen E., Rasku-Puttonen H. (2016). Developing social competence and other generic skills in teacher education: Applying the model of integrative pedagogy. European Journal of Teacher Education, 39, 368–387. doi:10.1080/02619768.2016.1171314

Research of stakeholders’ influence on STEM education implementation in professional training of engineering students  
Grytsiuk O.  (download)
[in Ukrainian]

Abstract. The paper analyzes career guidance and organizational aspects of the introduction of STEM education in the professional training of students of engineering specialties. It is shown that the United States of America, Australia, China, great Britain, Israel, Korea are the most actively promoting STEM approach in the educational direction, where thanks to the state and informal STEM education programs attract the attention of young people to STEM professions. Active application of STEM-approach in engineering education increases the competitiveness of graduates in the labor market. Today stakeholders or partners of educational institutions, public organizations, coalitions, institutions, business partners and sponsors, education centers, powerful technology companies-employers, are of crucial importance. The paper presents a scheme of cooperation and partnership between stakeholders and the STEM education Department of the Institute of modernization of educational content, one of the priorities of which is the organization of career guidance projects for young people. The aim of STEM projects is to involve young people in high-tech STEM industry: neuroelectronics, robotics, bioelectronic medicine, neurobiology, application of the principles of integration and project approach in the educational process, which will improve the quality characteristics and efficiency of training students of engineering specialties and will meet the needs of stakeholders in the labor market.

Key words: STEM education, STEM education center, stakeholders, engineering education, integration principle.

References

  1. Ctryzhak, O. Ye., Slipukhina, I. A., Polisun, N. I. & Chernetsʹkyy, I. S. (2017). STEM-osvita: osnovni definitsiyi, Information Technologies and Learning Tools, 62(6), 16–33.
  2. Babiychuk, S. (2018). STEM-osvita u SSHA: problemy ta perspektyvy, Pedahohichnyy chasopys Volyni, 1(8), 12–17.
  3. Hruzin, D. V., Novikova, N. V. (2017). Aktualʹnistʹ zastosuvannya STEM-tekhnolohiy v navchalʹnomu protsesi, Suchasni informatsiyni tekhnolohiyi ta innovatsiyni metodyky navchannya: dosvid, tendentsiyi, perspektyvy: materialy I Vseukrayinsʹkoyi naukovo-praktychnoyi Internet-konferentsiyi z mizhnarodnoyu uchastyu (Ternopilʹ, 9–10 lyst. 2017 r.), 30–34. URL: http://conf.fizmat.tnpu.edu.ua/media/magazin/2017/09.11.2017.pdf. (accessed: 21.08.2019).
  4. Sakunova, H., Moroz, I. (2018). STEM-osvita: zarubizhnyy dosvid ta perspektyvy rozvytku v Ukrayini, Naukovi zapysky TSDPU. Seriya: Pedahohichni nauky, 168, 204–208.
  5. Martin-Hansen, L. (2018). Examining ways to meaningfully support students in STEM. International Journal of STEM Education, 5(1). URL: https://stemeducationjournal.springeropen.com/track/pdf/10.1186/s40594-018-0150-3. (accessed: 27.08.2019). DOI: https://doi.org/10.1186/s40594-018-0150-3
  6. Pochtovyuk, A., Zagirniak, D., Pryakhina, K. (2018). The Problems of Training of Highly Skilled Engineers in Ukraine in the Context of International Tendencies, IEEE Proceedings of the International Conference on Modern Electrical and Energy Systems – MEES 2017 (Kremenchuk, Ukraine, 15–17 November 2017), 340–343.
  7. Moskalyk, H., Maksymova, L., Martynenko, M. (2018). Philosophical Principles of Formation of Secondary-School Students’ Readiness for Getting a Profession of an Engineer, IEEE Proceedings of the International Conference on Modern Electrical and Energy Systems – MEES 2017 (Kremenchuk, Ukraine, 15–17 November 2017), 348–351.
  8. Poyasok, T., Bespartochna, O., Grytsiuk, O. & Sivyakova, G. (2018). On the Expediency of Introducing the “Mathematics - Theoretical Foundations of Electrical Engineering” Integrated Course into the Educational Process, IEEE Proceedings of the International Conference on Modern Electrical and Energy Systems – MEES 2017 (Kremenchuk, Ukraine, 15–17 November 2017), 332–335.
  9. Kirsanova, T. M. (2018). STEM-osvita: vprovadzhennya ta perspektyvy rozvytku. URL: https://vseosvita.ua/library/pedagogicna-rada-stem-osvita-vprovadzenna-ta-perspektivi-rozvitku-76763.html. (accessed: 23.08.2019).

10.  Serhiyenko, N. V. (2017). STEM-osvita – novi mozhlyvosti dlya suchasnoho vykladacha ta studenta, STEM-osvita – problemy ta perspektyvy: zbirnyk materialiv II Mizhnarodnoho naukovo-praktychnoho seminaru (Kropyvnytsʹkyy, 25–26 zhovtnya 2017 r.), 90–91.

11.  Byryukova, T., Olar, O., Fediv, V. & Mykytyuk, O. (2018). Vykorystannya elementiv stem-osvity u pidhotovtsi studenta-medyka. Materialy VII Mizhnarodnoyi naukovo-praktychnoyi onlayn-internet konferentsiyi (Kropyvnytsʹkyy, 1–15 lyst. 2018 r.). URL: https://www.cuspu.edu.ua/ua/vii-mizhnarodna-naukovo-praktychna-onlain-internet-konferentsiia-problemy-ta-innovatsiyi-v-pryrodnycho-matematychniy-tekhnolohichniy-i-profesiyniy-osviti-2018-rik/sektsiia-2-innovatsii-v-osviti-metodolohichni-teoretychni-praktychni-ta-metodychni-aspekty/8515-vykorystannya-elementiv-stem-osvity-u-pidhotovtsi-studenta-medyka. (accessed: 23.08.2019).

12.  Kharlamenko, V. (2017). STEM-osvita: proforiyentolohichnyy aspekt, STEM-osvita: stan vprovadzhennya ta perspektyvy rozvytku: materialy III Mizhnarodnoyi naukovo-praktychnoyi konferentsiyi (Kyyiv, 9–10 lyst. 2017 r.), 132–135.

13.  Kim, M. S., Keyhani, N. (2019). Understanding STEM teacher learning in an informal setting: a case study of a novice STEM teacher, Research and Practice in Technology Enhanced Learning, 14(9). URL:  https://telrp.springeropen.com/track/pdf/10.1186/s41039-019-0103-6. (accessed: 30.08.2019).

14.  Jamaludin, A., Hung, D. (2016). Problem-solving for STEM learning: navigating games as narrativized problem spaces for 21st century competencies, Research and Practice in Technology Enhanced Learning, 12(1). URL: https://telrp.springeropen.com/track/pdf/10.1186/s41039-016-0038-0. (accessed: 30.08.2019).

15.  Mansfield, K. C., Welton, A. D., & Grogan, M. (2014). “Truth or consequences”: a feminist critical policy analysis of the STEM crisis, International Journal of Qualitative Studies in Education, 27(9), 1155–1182.

16.  Pelch, M. (2018). Gendered differences in academic emotions and their implications for student success in STEM, International Journal of STEM Education, 5. URL: https://stemeducationjournal.springeropen.com/track/pdf/10.1186/s40594-018-0130-7. (accessed: 02.09.2019). DOI: https://doi.org/10.1186/s40594-018-0130-7

17.  Natsionalʹna stratehiya rozvytku osvity v Ukrayini na period do 2021 roku (2013). URL: http://oneu.edu.ua/wp-content/uploads/2017/11/nsro_1221.pdf. (accessed: 22.08.2019).

18.  Samchuk, L., Moyseyuk, Yu. (2018). Steykkholdery osvity (rekomendatsiynyy bibliohrafichnyy spysok), Analitychnyy visnyk u sferi osvity y nauky: dovidkovyy byuletenʹ, VIII, 15–28. URL: http://lib.iitta.gov.ua/712161/1/Analituchnuy_visnuk_2018-8.pdf. (accessed: 27.08.2019).

19.  Memorandum pro stvorennya Koalitsiyi STEM-osvity. (2016). URL: http://csr-ua.info/csr-ukraine/wp-content/uploads/2016/01/STEM_memorandum_FINAL_А11.pdf. (accessed: 27.08.2019).

20.  Teoretychni aspekty innovatsiynoyi modeli STEM-osvity. (2018). URL: https://naurok.com.ua/teoretichni-aspekti-innovaciyno-modeli-stem-osviti-78197.html. (accessed: 21.08.2019).

21.  Tinnell, T.,   Ralston, P.,   Tretter, T. &   Mills, M. (2019).   Sustaining   pedagogical   change   via   faculty   learning   community, International Journal of STEM Education, 6. URL: https://stemeducationjournal.springeropen.com/track/pdf/10.1186/s40594-019-0180-5. (accessed: 03.09.2019). DOI: https://doi.org/10.1186/s40594-019-0180-5

22.  Foster, Ch., Wigner, A., Lande, M., Jordan, S. (2018).   Learning from the parallel pathways of Makers to broaden pathways to engineering, International Journal of STEM Education, 5. URL: https://stemeducationjournal.springeropen.com/track/pdf/10.1186/s40594-017-0098-8. (accessed: 03.09.2019). DOI: 10.1186/s40594-017-0098-8

23.  Höffler, T., Köhler, C., Parchmann, I. (2019). Scientists of the future: an analysis of talented students’ interests, International Journal of STEM Education, 6. URL: https://stemeducationjournal.springeropen.com/track/pdf/10.1186/s40594-019-0184-1. (accessed: 04.09.2019). DOI: https://doi.org/10.1186/s40594-019-0184-1

24.  Carlisle, D.,  Weaver, G. (2018).  STEM  education  centers:  catalyzing  the  improvement  of  undergraduate  STEM  education, International Journal of STEM Education, 5. URL: https://stemeducationjournal.springeropen.com/track/pdf/10.1186/s40594-018-0143-2. (accessed: 05.09.2019). DOI: https://doi.org/10.1186/s40594-018-0143-2

25.  Tekkumru-Kisa, M., Stein, M. (2017). Designing, facilitating, and scaling-up video-based professional development: supporting complex forms of teaching in science and mathematics, International Journal of STEM Education, 4. URL: https://stemeducationjournal.springeropen.com/track/pdf/10.1186/s40594-017-0087-y. (accessed: 06.09.2019). DOI: 10.1186/s40594-017-0087-y

Features of using of innovative pedagogical technologies during the training of economic specialties students  
Duba N.  (download)
[in Ukrainian]

Abstract. Development  of methods of formation of professional competence of students of economic specialties by means of innovative technologies. The analysis of the modern process of preparation of specialists of different specialties is carried out. Prospects of development of the education system of Ukraine with the use of innovative technologies are noted. It is determined that one of the modern methods of increasing the acquisition of knowledge is the use of innovative technologies as a means of presenting educational material. Also, pedagogical technology reflects the tactics of pedagogical technologies implementation and is based on the knowledge of the laws of functioning of the system "teacher - environment - student". Theoretical, methodological and organizational aspects of teaching economic disciplines are considered. The role of innovative approaches and active methods of teaching economic disciplines in shaping future specialists' readiness for professional activity, their economic thinking and economic behavior is highlighted. Examples of the use of modern innovative technologies during lectures for students of economic specialties are given.  Acquired skills will help young people to think creatively, to be able to independently find the answers to the necessary questions, to organize and summarize the material, working with educational literature and modern computer technologies. The necessity of using interactive methods of teaching economic subjects for students is substantiated. The methods of interactive learning and their methodical forms, which are the most optimal for the formation of professional competence of students of economic specialties, are considered. As a result of research, it was found that the use of active methods in the learning activities of embedded innovative learning technologies will improve the quality of training of students. This will allow the formation of a new generation of specialists, which is designed to effectively modernize the modern model of the national economy.

Key words: innovative teaching methods, economic knowledge, pedagogical innovations, interactive teaching methods, learning activation tools.

References

  1. Akbaba-Altun, S. (2004). Information Technology Classrooms and Elementary School Principals' Roles: Turkish Experience. Education and Information Technologies, 9(3), 255–270.
  2. Kalogiannakis, M. A. (2004). Virtual Learning Environment for the French Physics Teachers. Education and Information Technologies, 9, 345–353.
  3. Parker, J. (2018). The Role of Information Communication Technologies in Enriching Adult Education Theory Building. Encyclopedia of Information Communication Technologies and Adult Education Integration, Columbia University, USA, 16 p.
  4. Collis, B. (2018). Information Technologies for Education and Training. Handbook on Information Technologies for Education and Training, 1-20.
  5. Tatnall A. (2011). The various topics relating to education and information technologies. Education and Information Technologies, 16, 225-226.
  6. Dlamini, R., Nkambule, F. (2019). Information and Communication Technologies’ Pedagogical Affordances in Education. Encyclopedia of Education and Information Technologies, 14 p. DOI: https://doi.org/10.1007/978-3-319-60013-0_216-1
  7. Bescherer, C. (2019). Technologies in Mathematics Education. Encyclopedia of Education and Information Technologies, 14 p.
  8. 10 Innovative Learning Strategies For Modern Pedagogy. URL https://www.teachthought.com/the-future-of-learning/10-innovative-learning-strategies-for-modern-pedagogy/ (accessed 15.08.2019)
  9. Verbilo, O. F. (2015). Teoretichnі osnovi navchannja ekonomіchnih disciplіn [Theoretical foundations of teaching economic disciplines]. Vishha shkola, Kiїv, Ukraine, 167 p.

10.  Melnikova, O. V. (2014). Іnnovatcії u vishchіi osvіtі iak chinnik formuvannia natcіonalnoї ekonomіki znan [Innovation in higher education as a factor in the formation of the national knowledge economy]. Kharkіvskogo natcіonalnogo pedagogіchnogo unіversitetu іmenі G.S. Skovorodi «Ekonomіka», 14, 16-27.

11.  Gai, O. M. (2015). Іnteraktivnі metodi vikladannia ekonomіchnikh distciplіn u vishchikh navchalnikh zakladakh v kontekstі zabezpechennia iakostі pіdgotovki vіtchiznianikh fakhіvtcіv [Interactive methods of teaching economic disciplines in higher education institutions in the context of ensuring the quality of training of domestic specialists]. Naukovі pratcі Kіrovogradskogo natcіonalnogo unіversitetu. Ekonomіchnі nauki, 27, 36–42.

12.  Dobriden, A. V. (2012). Vikoristannia іnnovatcіinikh tekhnologіi u praktichnіi robotі suchasnogo pedagoga [The use of innovative technologies in the practical work of the modern teacher]. Problemi pіdgotovki suchasnogo vchitelia, 6 (part 1), 107–112.

13.  Paridukha, O. Iu. (2005). Іnnovatcіina tekhnologіia – nevіd’єmna skladova osvіtnogo protcesu [Innovative technology is an integral part of the educational process]. Nauk. zap. Vіnnitc. derzh. ped. un-tu іm. M. Kotciubinskogo. Serіia: Pedagogіka і psikhologіia, 16, 101–103.

14.  Barabas, D. (2016). Osvіtnі іnnovatcії ta їkh іmplementatcіia v Ukraїnі [Educational innovations and their implementation in Ukraine]. Naukovii vіsnik Odeskogo natcіonalnogo ekonomіchnogo unіversitetu, 3, 35-54. URL http://nbuv.gov.ua/UJRN/Nv_2016_3_5 (accessed 20.09.2019)

15.  Teaching Methods. URL: https://teach.com/what/ teachers-know/teaching-methods/ (accessed 27.08.2019).

16.  Kremen, V. G. (2003). Distantcіina osvіta – perspektivnii shliakh rozv’iazannia suchasnikh problem profesіinoї osvіti [Distance education is a promising way of solving modern problems of vocational education]. Vіsnik Akademії distantcіinoї osvіti, 1, 4–11.

17.  Sіrii, Ye. V. (2010). Іnnovatcіinii rozvitok osvіti v Ukraїnі: rozgortannia problemi ta zasadnitckі orієntiri [Innovative Development of Education in Ukraine: Deploying Problems and Background]. Aktualnі problemi sotcіologії, psikhologії, pedagogіki, 65–77.

18.  Tesliuk, V. M., Yakymovska, A. V. (2016). Directions of improving the teaching of economic disciplines. SWorld Scientific Works, 2(43), Т. 4, 15–20.

19.  Romaniuk, A. A. (2010). Vikoristannia іnteraktivnikh tekhnologіi pri vikladannі ekonomіchnikh distciplіn [Use of interactive technologies in teaching economic disciplines]. Zbіrnik naukovikh pratc Khmelnitckogo іnstitutu sotcіalnikh tekhnologіi Unіversitetu «Ukraїna», 2, 34–36.

20.  Kіnash, І.A. (2011). Information technologies in economic education. Information technology in education, 10, 80-87.

INNOVATIONS IN USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES AT EDUCATION

Problem-Solving in MS Excel as a Method of Some Key Competences Developing During the Study of Chemistry, Mathematics and Informatics in Secondary School Institutions  
Semchuk A., Yuzkova V.  (download)
[in Ukrainian]

Abstract. The article analyses the competence potential of current syllabi in chemistry (Years 7–9), mathematics (Years 5–9) and informatics (Years 5–9), including syllabi for Year 9 students of general secondary education institutions (GSEI) with an in-depth study of mathematics/chemistry, from the standpoint of equivalence of all key competencies at all stages of study proclaimed by the New Ukrainian School. The topics that can be successfully used to implement the competency-based approach and optimize the learning process due to interdisciplinary integration according to the proposed algorithm are identified. The algorithm steps are: on the basis of the chemical/economic problem, mathematical model variables are introduced and described; a mathematical model is created; mathematical model solution is found using Solver add-in of the spreadsheet program MS Excel; the numerical solution is interpreted in terms of the problem being solved. This approach contributes to the development of mathematical, information and digital competencies, competencies in natural sciences and technologies, initiative and entrepreneurship as key competencies of the New Ukrainian School during the educational process in mathematics, chemistry and informatics in Year 9 of GSEI. The described algorithm for problem-solving is proposed to be applied to problems connected with calculating a mass fraction of a solute in a solution formed by mixing several solutions (typical chemical problems on the topic “Calculations related to the composition of solutions”) and tasks involving the concept of percentage or mass ratio of components of the mixture/alloy formed from two or more input mixtures/alloys (typical algebraic problems on the topic "Percentage calculations"). The authors demonstrate potential of the developed algorithm use for optimization economic problems solving in order to implement the cross-cutting content line “Entrepreneurship and financial literacy” in the informatics educational process (the topic “Creating and processing models using examples of tasks from different subject areas in various software environments”). Three tasks were solved and illustrated with screenshots, and the new, clear to students, approach for solving systems of linear algebraic equations using MS Excel spreadsheets (they are traditionally proposed to be solved using not studied in school inverse matrix) was proposed.

Key words: mathematical modeling, integration of science and mathematics disciplines, New Ukrainian School, competence in math, competences in natural sciences and technologies, information and digital competence, initiative and entrepreneurship.

References

  1. Onopriienko, O. (2017). Kontseptsiia novoi ukrainskoi shkoly yak ideina osnova modernizatsii osvitnoho seredovyshcha. Modernizatsiia osvitnoho seredovyshcha: problemy ta perspektyvy: materialy Druhoi Mizhnarodnoi naukovo-praktychnoi konferentsii, Uman, 5-6 October, 2017, FOLIA COMENIANA: Visnyk Polsko-ukrainskoi naukovo-doslidnytskoi laboratorii psykhodydaktyky imeni Ya. A. Komenskoho, VPTs «Vizavi», Uman, pp. 27-31. [in Ukrainian]
  2. Krasnobokyi, Yu. M., Tkachenko, I. A. (2013). Intehratsiia pryrodnycho-naukovykh dystsyplin u svitli kompetentnisnoi paradyhmy osvity. Teoriia ta metodyka navchannia fundamentalnykh dystsyplin u vyshchii shkoli: zbirnyk naukovykh prats. Vypusk VIII,  Vydavnychyi viddil KMI, Kryvyi Rih, рр. 83-89. [in Ukrainian]
  3. (2016). Kontseptsiia Novoi ukrainskoi shkoly. URL: https://www.kmu.gov.ua/storage/app/media/reforms/ukrainska-shkola-compressed.pdf (accessed 05.09.2019). [in Ukrainian]
  4. (2017). Khimiia. 7-9 klas. Navchalna prohrama dlia zahalnoosvitnikh navchalnykh zakladiv zatverdzhena nakazom MON vid 07.06.2017 № 804. URL: https://mon.gov.ua/storage/app/media/zagalna%20serednya/programy-5-9-klas/onovlennya-12-2017/10-ximiya-7-9.doc (accessed 05.09.2019). [in Ukrainian]
  5. (2017). Matematyka. 5-9 klas. Navchalna prohrama dlia zahalnoosvitnikh navchalnykh zakladiv zatverdzhena nakazom MON vid 07.06.2017 № 804. URL: https://mon.gov.ua/storage/app/media/zagalna%20serednya/programy-5-9-klas/onovlennya-12-2017/5-programa-z-matematiki.docx (accessed 05.09.2019). [in Ukrainian]
  6. (2017). Informatyka. 5-9 klas. Navchalna prohrama dlia zahalnoosvitnikh navchalnykh zakladiv zatverdzhena nakazom MON vid 07.06.2017 № 804. URL: https://mon.gov.ua/storage/app/media/zagalna%20serednya/programy-5-9-klas/onovlennya-12-2017/programa-informatika-5-9-traven-2015.pdf (accessed 05.09.2019). [in Ukrainian]
  7. Merzliak, A. H., Polonskyi, V.B., Yakir, M.S. (2017). Alhebra dlia zahalnoosvitnikh navchalnykh zakladiv z pohlyblenym vyvchenniam matematyky: pidruch. dlia 9 kl. zahalnoosv. navch. zakl. Himnaziia, Kharkiv, Ukraine, 416. [in Ukrainian]
  8. Iaroshenko, O. H. (2017). Khimiia: pidruch. dlia 9 kl. zahalnoosvit. navch. zakladiv. UOVTs «Orion», Kyiv, Ukraine, 224. [in Ukrainian]
  9. Semchuk, A. R., Denysenko, V. I., Hotynchan, I. Z. (2012). Ekonomiko–matematychni metody i modeli: optymizatsiini zadachi : navch.-metod. posibnyk. «Misto», Chernivtsi, Ukraine, 176. [in Ukrainian]
  10. Zamulko, O. I. (Ed.) (2012). Intehratsiia znan z predmetiv pryrodnycho-matematychnoho tsyklu: problemy ta shliakhy yikh vyrishennia : zbirnyk materialiv internet-seminaru, chastyna II. Cherkasy, Ukraine, 88. [in Ukrainian]
  11. Lytvynova, S. H. (2019). Model vykorystannia systemy kompiuternoho modeliuvannia dlia formuvannia kompetentnostei z pryrodnycho-matematychnykh predmetiv. Fizyko-matematychna osvita, 1(19), 108-115. [in Ukrainian]
  12. Slobodianyk, O. V. (2018). Computer Models In The Research Activity Of Students In Physics. Physical and Mathematical Education, 4(18), 149-153.  doi: 10.31110/2413-1571-2018-018-4-025. [in Ukrainian]
  13. Katerynyiuk, H. D. (2016). Rozvytok matematychnykh kompetentnostei uchniv u protsesi formuvannia zdatnosti do matematychnoho modeliuvannia. Suchasni informatsiini tekhnolohii ta innovatsiini metodyky navchannia u pidhotovtsi fakhivtsiv: metodolohiia, teoriia, dosvid, problemy: Zb. nauk. pr., 47, 63-67. [in Ukrainian]
  14. Walshe, G., Johnston, J., McClelland, G. (2015). Integrating Mathematics into Science: Design, Development and Evaluation of a Curriculum Model. Cognitive and Affective Aspects in Science Education Research: Selected Papers from the ESERA 2015 Conference. Springer, Dordrecht, 309-321.
  15. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 2015, 25(1), 127-147. doi: 10.1007/s10956-015-9581-5.
  16. Malone, K. L., Schunn, C. D., Schuchardt, A. M. (2018). Improving Conceptual Understanding and Representation Skills Through Excel-Based Modeling. Journal of Science Education and Technology, 27 (1), 30-44. doi: https://doi.org/10.1007/s10956-017-9706-0.
  17. Berlin, D. F., White, A. L. (1994). The Berlin-White Integrated Science and Mathematics Model. School Science and Mathematics, 94(1), 2-4.
  18. Ríordáin, M. N., Johnston, J., Walshe, G. (2015). Making mathematics and science integration happen: key aspects of practice. International Journal of Mathematical Education in Science and Technology, 47, 233-255. doi: http://dx.doi.org/10.1080/0020739X.2015.1078001.
  19. Kiray, S. A. (2012). A new model for the integration of science and mathematics: The balance model. Energy Education Science and Technology. Part B: Social and Educational Studies, 4(3), 1181-1196.
  20. Benecka, J. (2016). Numerical Modelling with Spreadsheets as a Means to Promote STEM to High School Students. Eurasia Journal of Mathematics, Science and Technology Education, 12(4), 947-964.
  21. Jackson, J, Dukerich, L, Hestenes, D. (2008). Modeling instruction: an effective model for science education. Sci Educ., 17(1), 10–17.
  22. Vil`yams, O. (1999). EXCEL dlya uchyony`kh, inzhenerov i studentov. Yunior, Kyiv, Ukraine, 528. [in Russian]
  23. Vasil`ev, A. N. (2004). Nauchny`e vy`chisleniya v Microsoft Excel. Izdatel`skij dom "Vil`yame", Moscow, Russia, 512. [in Russian]
  24. Uokenbakh, D. (2013). Microsoft Excel 2010. Bibliia polzovatelia. OOO “I.D.Viliams”, Moscow, Russia, 912. [in Russian]

Development of a simulation model of process control systems as a tool in modern training technology  
Nikolaienko A., Yakushevich I.  (download)
[in Ukrainian]

Abstract. The article substantiates the need to develop practical recommendations in the form of a process control system simulation model for employees of enterprises who master the production of aluminum wire rod on a casting and rolling unit without sufficient technological support and equipment with automation systems. Mathematical dependences, automation systems and control algorithms are proposed, with the help of which it is possible to implement automatic process control modeling, understand the features of the technological process, adjust it to a given operating mode, study the influence of input parameters on the quality of regulation and gain some experience in setting up and maintaining an automatic process control system. The simulation model of the automated control system was created on the basis of a single computer using the Unity Pro programming packages produced by Schneider Electric and TIA Portal of Siemens company. Unity Pro was used to develop simulation and process control programs and TIA Portal ", which has ample opportunities for creating a human-machine interface, was used to develop an automated workstation for an operator-technologist. The connection between these packages is implemented using the appropriate settings in each of them. The operator’s workstation contains three basic windows for visualizing various sections of the technological line with the display and animation of mechanisms, control panels for their work and means of monitoring technological parameters. To configure the process control system, set up the production line and conduct research in each window, you can call up a panel with tuning parameters, activation of disturbing influences and graphs of changes in controlled quantities. The control system simulator software allows you to implement two manual control modes for the casting and rolling unit - free and interlocked, as well as automatic. All this creates opportunities to simulate various situations in the operation of the furnace department and the casting and rolling unit, as well as gain some experience as an operator of automated workplaces and as a setup manager for aluminum process control systems.

Key words: simulation model, casting and rolling unit, algorithm, programming, automation system.

References

  1. Bystrova, I. N. (2007). Imitatsionnoye modelirovaniye kak sovremennaya tekhnologiya obucheniya budushchikh spetsialistov v vuze. [Simulation as a modern technology for training future specialists at a university]. URL: http:// t21.rgups.ru/archive/doc 2007/4/05.doc. (accessed: 15.11.2019). [in Ukrainian]
  2. Konstantinov, E. V., Timchenko, V. S. (2015). Primeneniye imitatsionnogo modelirovaniya v uchebnom protsesse transportnogo VUZa [The use of simulation in the educational process of a transport university.]Internet-magazine "World of Science",  No. 3. URL: http://mir-nauki.com/PDF/42PDMN315.pdf. (accessed:15.11.2019). [in Ukrainian]
  3. Dozortsev, V. M. (1999). Obucheniye operatorov tekhnologicheskikh protsessov na baze komp'yuternykh trenazherov [Training of technological process operators based on computer simulators]. Devices and control systems, 8, 61-70. [in Russian]
  4. Akhmetsafin, R., Akhmetsafina, R., Kursov, Yu. (1998). Razrabotka trenazhorov i otladka proyektov ASUTP na baze paketov MMI/SCADA [Development of simulators and debugging of process control systems based on MMI / SCADA packages]. Modern automation technology, 3, 38-41. [in Russian]
  5. Spanel, U., Kreutz, M., Roggatz, C. (2006). Simulator Based Operator Training. International Journalof Distributed Energy Resources, 2, 3-6.
  6. (2019). Far East (China) Group Limited. URL: http:// shcablemachinery.ru/ 1-4-continuous-casting-rolling-line (accessed: 10.04.19). [in Сhinian]
  7. Tselikov, A. I. (1979). Metallurgicheskiye mashiny i agregaty: nastoyashcheye i budushcheye. present and future [Metallurgical machines and assemblies: present and future]. Metallurgy, Moscow, Russia, 144. [in Russian]
3.     Ramenskaya, A. V. (2019). Obzor sistem imitatsionnogo modelirovaniya, ispol'zuyemykh pri podgotovke bakalavrov [Review of simulation systems used in the preparation of bachelors]. URL: https://scholar.google.ru/citations?user= Uy0Y4IAAAAJ&hl=ru (accessed:15.11.2019). [in Russian]
7.     Lutskaya, N. N., Pupena, A. N., Shved, S. N. (2013.) Sozdaniye imitatsionnykh modeley tekhnologicheskikh protsessov dlya otladki programm PLK i proyektov SCADA [Creation of simulation models of technological processes for debugging PLC programs and SCADA projects]. Automation in industry, 7, 50-54. [in Ukrainian]

10.  Sezonenko, Yu. D., Sezonenko, A. Yu. (2017). Plavil'nyye i plavil'no-razdatochnyye pechi dlya alyuminiyevykh splavov [Melting and smelting and distributing furnaces for aluminum alloys.] URL: https:// lityo.com.ua/ plavilnye-i-plavilno-razdatochnye-pechi-dlya-alyuminievykh -splavov (accessed:25.11.2019). [in Russian]

11. Emelyanov, V. A. (1988).Teplovaya rabota mashin nepreryvnogo lit'ya zagotovok. [Thermal performance of continuous casting machines].  Metallurgy,  Moscow, Russia, 143. [in Russian]

12. Nikolaiеnko, A. M., Tregulova, I. P., Barishenko, O. M. (2019). Doslidzhennya teploobminu v rotorniy lyvarniy mashyni. Metallurgy [Study of heat transfer in a rotary casting machine]. Scientific works of Zaporizhzhya State Engineering Academy, 1 (41), 64-69. [in Ukrainian]

13. (2019). Sposib okholodzhennya zlyvka u rotorniy lyvarniy mashyni.[A method of cooling the ingot in a rotary casting machine.] Stalemate. No. 135698 Ukraine; claimed 02/14/2019; publ. 10/07/2019, Bul. № 13. [in Ukrainian]

14. (2019). Sposib rehulyuvannya teplovoho rezhymu krystalizatora u rotorniy lyvarniy mashyni. [A method of regulating the thermal regime of the mold in a rotary casting machine ]. Stalemate. No. 136035 Ukraine; claimed 03/18/2019; publ. 25/07/2019, Bul. № 14. [in Ukrainian]

15. Tarantseva, K. R., Tarantsev, K. V. (2014). Protsessy i apparaty khimicheskoy tekhnologi v tekhnike zashchity okruzhayushchey sredy [Processes and devices of chemical technologists in environmental protection technology] : textbook. benefits, Moscow, Russia: SIC INFRA-M, 412. [in Russian]

16. Nikolaєnko, A. M., Taran, Yu. P., Chumak, Є. T. (2013). Proektuvannya systemy avtomatyzatsiyi za dopomohoyu Microsoft Visual Basic [Designing an automation system using Microsoft Visual Basic]. Engineering and educational technology in electrical and computer systems, 4, 47–55. URL: http://eetecs.kdu.edu.ua/2013_04/EETECS2013_0406.pdf. (accessed 25.11. 2019). [in Ukrainian]

17. (2018). Sposib formuvannya bunta v motalkakh z osiovoyu podacheyu katanky.[Method of forming riot in coils with axial feed of wire rod]. Stalemate.No. 129203 Ukraine; claimed 16.04.2018; publ. 10.25.2018. [in Ukrainian]

18. Pupena, O. M., Elperin, I. V. (2017). Prohramuvannya promyslovykh kontroleriv u seredovyshchi UnityPro. Programming of industrial controllers in UnityPro environment.]environment: textbook. Kyiv, Lira-K, 376. [in Ukrainian]

19. (2015). Rukovodstvo po prohrammyrovanyyu S7-1200/S-1500.[Programming Guide S7-1200/S-1500.] Entry-ID: 81318674, V1.4, 11/2015. 109. Retrieved fromhttps://ecshop.com.ua /files/ programming_S7_1200_1500.pdf. (accessed: 15.10.19).

20. Dozortsev, V. M. (1996). Komp'yuternyye trenazhery real'nogo vremeni dlya obucheniya i perepodgotovki operatorov i tekhnologicheskogo personala potentsial'no opasnykh proizvodstv [Real-time computer simulators for training and retraining of operators and process personnel of potentially hazardous industries]. Devices and control systems, 8, 30-31. [in Russian]

21. Glinkov, G. M., Makovsky, V. A. (1999). ASUTP v chernoy metallurgii [ Automated process control systems in the steel industry]. Metallurgy, Moscow, 310. [in Russian]

22. Krasnov, B. I. (1965). The method of controlling the thermal regime 197099 USSR, Кл. 31с.21, МРК V 22d.Sposob upravleniya teplovym rezhimom(SSSR).1015958/22-2; declared 21.06.1965, No 9. [in Russian]

23. Nekipelov, V. S. (2018). Oborudovaniye dlya namotki sortovogo prokata i katanki.Teoriya i konstruktsii [Equipment for winding long products and wire rod. Theory and construction]: textbook. benefits: Infa-Engineering,Moscow, 140. [in Russian]

 



Яндекс.Метрика